Acta Crystallographica Section C

Crystal Structure

Communications

ISSN 0108-2701

(E)-1-(2-Hydroxy-4-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)ethene

Jianxing Zhang, Shou-Feng Chen, Kevin K. Klausmeyer and Robert R. Kane*

Department of Chemistry and Biochemistry and Center for Drug Discovery, Baylor University, Waco, TX 76798-7348, USA
Correspondence e-mail: bob_kane@baylor.edu

Received 4 April 2003
Accepted 14 May 2003
Online 20 June 2003
In the crystal structure of the title compound, $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5}$, all geometric parameters fall within experimental error of the expected values. Analysis of the molecular-packing plots reveals an infinite one-dimensional linear array running parallel to the c axis, formed by an $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen-bonding interaction. The stilbene framework and most of the substituents are approximately coplanar.

Comment

The microtubule system of eukaryotic cells is an important target for the development of anticancer agents. Novel drugs have been developed that bind to tubulin, disrupting cellular microtubule structure and function, thus resulting in mitotic arrest. The combretastatins are tubulin polymerization inhibitors isolated from the bark of the South African tree Combretum caffrum (Pettit et al., 1982, 1989). The most potent of these is combretastatin A-4 (CA-4), (I), which is a potent cytotoxic agent and which strongly inhibits the polymerization of tubulin by binding to the colchicine site (Hamel \& Lin, 1983).

(I) (CA-4) $\quad R=\mathrm{H}$
(II) (CA-4P) $R=\mathrm{PO}_{3} \mathrm{Na}_{2}$

(III)

(IV)

CA-4 shows potent cytotoxicity against a wide range of human cancers, including multi-drug-resistant cell lines (ElZayat et al., 1993), and is thus an attractive lead compound for the development of anticancer drugs. However, CA-4 has a demonstrated lack of efficacy in vivo, presumably because of

Figure 1
SHELXTL (Sheldrick, 1994) plot of (III), showing displacement ellipsoids at the 35% probability level for non-H atoms. H atoms are shown as circles of arbitrary size.
poor pharmacokinetics that arise from its high lipophilicity and limited aqueous solubility. A phosphate prodrug of CA-4, viz. CA-4P or (II) (Pettit \& Rhodes, 1998), has been synthesized in order to improve the aqueous solubility and pharmacokinetics.

To obtain compounds with pharmaceutically acceptable properties and improved antitumor activities, we have designed and synthesized a number of CA-4 analogs and their corresponding sodium phosphate prodrugs. Compounds (III) and (IV) are two isomeric derivatives that we have prepared recently. In order to unequivocally confirm the molecular structure, and to gather information for our molecular recognition studies, we have determined the crystal structure of (III). Fig. 1 shows the crystallographically determined molecular structure of (III), while selected parameters are presented in Table 1. All internuclear distances and angles fall within the range of expected values, and the stilbene system exhibits only minor deviations from ideal planarity, as evidenced by the torsion angles (Table 1). Each methoxy substituent is approximately coplanar with the aromatic rings, with the exception of the O4 methoxy group, which is twisted

Figure 2
The crystal packing in (III), viewed along the b axis, showing the intermolecular hydrogen bonding (dashed lines). [Symmetry code: (*) $-\frac{1}{2}+x,-\frac{1}{2}-y,-\frac{1}{2}+z$.]
by approximately 75° relative to the plane of the aromatic ring. This twist minimizes steric interactions with the neighboring O3 and O5 methoxy groups.

The crystal packing of (III) (Fig. 2) consists of corrugated ribbons formed by an infinite linear array of molecules related by an n-glide operation and linked by an intermolecular O1$\mathrm{H} \cdots \mathrm{O} 4$ hydrogen-bonding interaction (Table 2).

Experimental

To a dimethylformamide (7 ml) solution containing an isomeric mixture of the silyl-protected precursor to (III) and (IV) [3:1 (Z):(E)-1-(2-tert-butyldimethylsiloxy-4-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)ethane] ($1.12 \mathrm{~g}, 2.6 \mathrm{mmol}$) were added KF ($150 \mathrm{mg}, 2.6 \mathrm{mmol}$) and $\mathrm{HBr}(462 \mathrm{mg}, 0.3 \mathrm{ml}, 2.5 \mathrm{mmol})$. Additional $\mathrm{HBr}(0.3 \mathrm{ml})$ was added after 12 h . The reaction mixture was stirred for a total of 2 d , and then water $(15 \mathrm{ml})$ was added to the solution and the resulting suspension extracted with ethyl acetate ($3 \times 15 \mathrm{ml}$). The combined organic extracts were washed with water, dried over sodium sulfate and evaporated to dryness. The residue was applied to a silica-gel column and eluted with hexane/ethyl acetate (75:25). Compound (III) was obtained as a white powder, which was crystallized from methanol to afford pure (III) as white crystals ($210 \mathrm{mg}, 0.49 \mathrm{mmol}$; yield 18%).

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5}$
$M_{r}=316.34$
Monoclinic, $P 2_{1} / n$
$a=11.6693$ (15) \AA
$b=7.9790$ (8) A
$c=17.5818(13) \AA$
$\beta=90.673(9)^{\circ}$
$V=1636.9(3) \AA^{3}$
$Z=4$

Data collection

Enraf-Nonius CAD-4
\quad diffractometer

ω scans
3369 measured reflections
2867 independent reflections
2420 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.016$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.128$
$S=1.16$
2867 reflections
209 parameters
H atom refined by a mixture of constrained and independent refinement

$$
\begin{aligned}
& D_{x}=1.284 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \quad \text { reflections } \\
& \theta=12.5-21.3^{\circ} \\
& \mu=0.09 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Block, colorless } \\
& 0.54 \times 0.47 \times 0.41 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
& \theta_{\max }=24.9^{\circ} \\
& h=-1 \rightarrow 13 \\
& k=0 \rightarrow 9 \\
& l=-20 \rightarrow 20 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 600 \text { reflections } \\
& \text { intensity decay: } 2.1 \%
\end{aligned}
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0813 P)^{2}\right. \\
& \quad \quad \quad 0.3079 P] \\
& \quad \text { where } P=\left(F_{o}^{2}+2 \mathrm{~F}_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.74 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.20 \mathrm{e}^{-3} \\
& \text { Extinction correction: } \text { SHELXL93 } \\
& \text { Extinction coefficient: } 0.164(8)
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA \AA^{\circ}$).

O1-C2	1.3623 (19)	O4-C12	1.3778 (19)
O2-C4	1.374 (2)	O4-C17	1.4405 (19)
O2-C15	1.428 (2)	O5-C13	1.3671 (19)
O3-C11	1.365 (2)	O5-C18	1.425 (2)
O3-C16	1.421 (2)		
$\mathrm{C} 4-\mathrm{O} 2-\mathrm{C} 15$	117.49 (13)	O2-C4-C5	124.79 (15)
C11-O3-C16	117.98 (14)	O3-C11-C10	125.30 (15)
C12-O4-C17	115.69 (12)	O3-C11-C12	114.69 (15)
C13-O5-C18	117.40 (12)	O4-C12-C13	119.21 (14)
O1-C2-C3	122.02 (14)	O4-C12-C11	120.78 (14)
O1-C2-C1	116.79 (14)	O5-C13-C14	125.21 (14)
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 3$	115.13 (14)	O5-C13-C12	114.49 (13)
C18-O5-C13-C14	-2.6 (2)	$\mathrm{O} 4-\mathrm{C} 12-\mathrm{C} 11-\mathrm{O} 3$	5.4 (2)
O5-C13-C14-C9	177.77 (14)	C12-C11-O3-C16	-172.68 (15)
C17-O4-C12-C13	107.59 (16)	C16-O3-C11-C10	6.6 (2)
C18-O5-C13-C12	175.59 (14)	C15-O2-C4-C5	-2.7 (2)
C17-O4-C12-C11	-77.41 (19)	$\mathrm{C} 15-\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 3$	177.12 (15)

Table 2
Hydrogen-bonding geometry ($\AA \AA^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	$0.89(3)$	$1.85(3)$	$2.7052(16)$	$161(2)$

Symmetry code: (i) $x-\frac{1}{2},-\frac{1}{2}-y, z-\frac{1}{2}$.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms, 1993); Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); molecular graphics: SHELXTL/PC (Sheldrick, 1994); software used to prepare material for publication: SHELXTL/PC

RRK and KKK thank the Robert A. Welch Foundation (grant No. AA-1355 to RRK and grant No. AA-1508 to KKK) and RRK thanks Oxigene Inc. for financial support of this project.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SQ1018). Services for accessing these data are described at the back of the journal.

References

El-Zayat, A. A. E., Degen, D., Drabek, S., Clark, G. M., Pettit, G. R. \& Von Hoff, D. D. (1993). Anti-Cancer Drugs, 4, 19-25.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherland.
Hamel, E. \& Lin, C. M. (1983). Biochem. Pharmacol. 32, 3864-3867.
Harms, K. (1993). XCAD4. University of Marburg, Germany.
Pettit, G. R., Gragg, G. M., Herald, D. L., Schmidt, J. M. \& Lohavanijava, P. (1982). Can. J. Chem. 60, 1374-1376.

Pettit, G. R. \& Rhodes, M. R. (1998). Anti-Cancer Drug Des. 13, 183-191.
Pettit, G. R., Singh, S. B., Hamel, E., Lin, G. M., Alberts, D. S. \& Garcia-
Kendall, D. (1989). Experientia, 45, 209-211.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Univeristy of Göttingen, Germany.
Sheldrick, G. M. (1994). SHELXTL/PC. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

